Antiproliferative activities on U87/U373 glioblastoma cell lines of the most potent compound 4k showed a moderate effect (IC50 values between 33 and 46 μM). Microsomal stabilities of the designed compounds 4a-m were also investigated, showing great disparities, depending on benzo[b]thiophene ring 5-substitution.
Our previous research has revealed phosphoglycerate kinase 1 (PGK1) enhances tumorigenesis and sorafenib resistance of kidney renal clear cell carcinoma (KIRC) by regulating glycolysis, so that PGK1 is a promising drug target. Z57346765 induced expression changes of genes related to cell metabolism, DNA replication and cell cycle. Overall, we screened two novel PGK1 inhibitors, CHR-6494 and Z57346765, for the first time and discovered their potent anti-KIRC effects by suppressing PGK1 metabolic enzyme activity in glycolysis.
While multi-component reactions (MCRs) have been used to make many bioactive molecules, there are very few examples of using MCRs to make compounds that target protein kinases, which have emerged as one of the top drug candidates (especially in oncology). This work highlights our recent efforts to make ultrapotent protein kinase inhibitors using multi-component reactions (especially the Doebner-Povarov reaction).
Chemical or genetic PLK1 perturbation with LJ4827 effectuated pronounced lung cancer cytotoxicity in vitro and in vivo. Therefore, LJ4827 is a novel anticancer therapeutic for selectively impeding cancer mitosis through potent HASPIN inhibition, and simultaneous HASPIN and PLK1 interference is a promising therapeutic strategy for lung cancer.
In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Co-treatment of CHR6494 and MLN8237 enhanced the blockage of human CRC xenograft tumors in nude mice. Taken together, co-inhibition of Aurora A and Haspin enhances survivin inhibition, p53 pathway induction, mitotic catastrophe, apoptosis and tumor inhibition that may provide a potential strategy for CRC therapy.
Collectively, we demonstrate that GSG2 is a potential biomarker of CRC, and that GSG2 interference suppresses the progression of CRC and promotes apoptosis in vitro. These data suggest GSG2 as a putative oncogene, but will require additional in vivo studies to confirm.
Additional computational analysis of kinase perturbation data to predict the dependency of mitotic kinase in the absence of HASPIN activity, revealed the synthetic lethal effect of cotreatment of the chemical inhibitor of BUB1, PLK1 or AURKA with LJ4827. These data suggest that combined inhibition of HASPIN with the novel inhibitor and key mitotic kinases for centromere / kinetochore regulation would be effectivity therapeutic approach for cancer therapy.
almost 4 years ago
Synthetic lethality
|
AURKA (Aurora kinase A) • PLK1 (Polo Like Kinase 1) • HASPIN (Histone H3 Associated Protein Kinase) • BUB1 (BUB1 Mitotic Checkpoint Serine/Threonine Kinase)