In addition, the effect of LINRIS overexpression was reversed by miR-34a overexpression. Therefore, LINRIS siRNA silencing in GC may promote cell apoptosis by promoting miR-34a maturation.
1 year ago
Journal
|
MIR34A (MicroRNA 34a-5p) • IGF2BP2 (Insulin Like Growth Factor 2 MRNA Binding Protein 2)
Overexpression of miR-34a-5p or silencing of FOXP1 reversed the protective effects of METTL14 silencing on cell injury in the PE model. In conclusion, METTL14 mediated m6A modification to promote miR-34a-5p expression, leading to the inhibition of FOXP1 expression, which aggravated endothelial cell damage in the PE cell model.
Oxaliplatin inhibits tumor growth, invasion, and metastasis by upregulating miR-34a, activating the expression of the upstream P53 gene, and driving the downregulation of survivin (P53/miR-34a/survivin axis) in BGC-823 gastric cancer cells.
Our findings highlight the significance of the miR-34a/Axl/Akt/GSK-3β signaling axis in modulating the malignancy of oral cancer cells. Targeting miR-34a may hold therapeutic potential in oral cancer treatment, as manipulating its expression can attenuate the aggressive behavior of oral cancer cells via the Axl/Akt/GSK-3β pathway.
almost 2 years ago
Journal
|
AXL (AXL Receptor Tyrosine Kinase) • MIR34A (MicroRNA 34a-5p)
The overexpression of miR-34a-5p or inhibition of SIDT2 expression negated the alleviative effects of METTL14 silencing on mitochondrial homeostasis imbalance. In conclusion, METTL14, through m6A modification, modulates the miR-34a-5p/SIDT2 axis, impairing mitochondrial homeostasis in NAFLD.
While these two neuroblastoma cell lines are phenotypically diverse and gene expression differences between them are extensive, we observed that the regulation of gene expression in both cell lines is in a stable equilibrium at early timepoints after exposure to ionizing radiation.
Inhibition of miR-34a transiently led to upregulation of FOXP1 mRNA expression and increased cellular invasion in vitro. Our data indicate that miR-34a could be a potential biomarker for improving the diagnostic efficiency of OC, and miR-34a overexpression may reduce OC pathogenesis by targeting FOXP1.
Through various immune cells, factors, and other mechanisms, miR-34a can inhibit tumor carcinogenesis. In view of the important role of miR-34a in tumors, this research reviewed the aspects of miR-34a regulation of tumor immune microenvironment to exert anti-tumor effects in order to clarify the potential immunotherapy value of miR-34a in tumors.
Cell viability and colony formation assays revealed that overexpression of miR‑34a in BC cells enhances the chemosensitivity of cisplatin, doxorubicin, epirubicin and mitomycin C. Furthermore, miR‑34a inhibited cell proliferation and triggered G0/G1 cell cycle arrest by inhibiting cyclin D1 and cyclin E2 protein expression. Moreover, miR‑34a suppressed cell motility through the downregulation of epithelial‑mesenchymal transition. In summary, miR‑34a inhibits cell proliferation, motility and autophagy activity in BC, which can benefit BC treatment.
The P53/miR-34a/SIRT1 positive feedback loop plays an important role in the termination of LR. Our findings showed the molecular and metabolic mechanisms of LR termination and provide a potential therapeutic alternative for treating P53-wild-type HCC patients.