Conclusions Taken together, our approach addresses limitations in CAR-T manufacturing and demonstrates that multiplexed base editing is a feasible strategy for generating universally-compatible, fratricide-resistant 7CAR-T cells, which we are advancing towards clinical development for the treatment of T-ALL. More generally, this program demonstrates the potential for base editing to create highly-engineered cell therapies featuring at least four simultaneous edits which can confer a wide range of desirable therapeutic attributes.
Conclusions Taken together, our approach addresses limitations in CAR-T manufacturing and demonstrates that multiplexed base editing is a feasible strategy for generating universally-compatible, fratricide-resistant 7CAR-T cells, which we are advancing towards clinical development for the treatment of T-ALL. More generally, this program demonstrates the potential for base editing to create highly-engineered cell therapies featuring at least four simultaneous edits which can confer a wide range of desirable therapeutic attributes.