^
11ms
Selective TrkA Inhibitor VMD-928 to Treat TrkA Overexpression Driven Solid Tumors or Lymphoma (clinicaltrials.gov)
P1, N=82, Recruiting, VM Oncology, LLC | Trial completion date: Jun 2026 --> Dec 2026 | Trial primary completion date: Dec 2025 --> Jul 2026
Trial completion date • Trial primary completion date
|
NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1)
|
NTRK1 fusion • NTRK1 mutation • NTRK expression
|
VMD-928
11ms
Feasibility of Bronchial Washing Fluid for Molecular Testing with Next Generation Sequencing in Lung Cancer (clinicaltrials.gov)
P=N/A, N=65, Active, not recruiting, Pusan National University Hospital | Recruiting --> Active, not recruiting | Trial completion date: Dec 2026 --> Aug 2025 | Trial primary completion date: Dec 2025 --> Aug 2024
Enrollment closed • Trial completion date • Trial primary completion date
|
EGFR (Epidermal growth factor receptor) • HER-2 (Human epidermal growth factor receptor 2) • ALK (Anaplastic lymphoma kinase) • RET (Ret Proto-Oncogene) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2)
|
BRAF V600E • KRAS mutation • EGFR mutation • RET mutation • ROS1 fusion • NTRK1 mutation
11ms
Enrollment change
|
EGFR (Epidermal growth factor receptor) • HER-2 (Human epidermal growth factor receptor 2) • ALK (Anaplastic lymphoma kinase) • RET (Ret Proto-Oncogene) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2)
|
BRAF V600E • KRAS mutation • EGFR mutation • RET mutation • ROS1 fusion • NTRK1 mutation
12ms
Long-term survival after local immunotherapy for malignant gliomas: a retrospective study with 20 years follow-up. (PubMed, BMC Immunol)
These findings suggest that certain patients diagnosed as malignant gliomas, including G34-DHG (WHO grade 4), can acquire long-term survival after local immunotherapy. Tumor GTR before local immunotherapy and relatively weaker immunosuppressive tumor microenvironment are the favorable factors for long-term survival. Larger, controlled studies with standardized treatment protocols, including consistent use of GTR, are warranted to further evaluate the potential benefits of locally delivered immunotherapy.
Retrospective data • Journal • IO biomarker
|
IDH1 (Isocitrate dehydrogenase (NADP(+)) 1) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1)
|
IDH1 mutation • NTRK1 mutation
1year
DB-1311-O-1001: A Study of DB-1311 in Advanced/Metastatic Solid Tumors (clinicaltrials.gov)
P1/2, N=450, Recruiting, DualityBio Inc. | N=280 --> 450 | Trial completion date: Apr 2025 --> Sep 2026 | Trial primary completion date: Apr 2025 --> Sep 2026
Enrollment change • Trial completion date • Trial primary completion date • Metastases
|
EGFR (Epidermal growth factor receptor) • KRAS (KRAS proto-oncogene GTPase) • BRAF (B-raf proto-oncogene) • ALK (Anaplastic lymphoma kinase) • MET (MET proto-oncogene, receptor tyrosine kinase) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2) • CD276 (CD276 Molecule)
|
BRAF V600E • KRAS mutation • EGFR mutation • KRAS G12C • BRAF V600 • NTRK1 fusion • NTRK3 fusion • NTRK2 fusion • ALK rearrangement • MET exon 14 mutation • ROS1 rearrangement • MET mutation • RET rearrangement • KRAS G12 • NTRK1 mutation
|
BNT324
1year
Tissue-based Next Generation Sequencing (NGS) for Patients with Advanced Solid Tumors: the experience of Verona University Hospital (AIOM 2024)
Our study provides an example of implementation of molecular profiling in an academic pre-screening program. Further analysis will investigate treatment matching rates, drug access schemes, and their impact on treatment efficacy and survival.
Clinical • Next-generation sequencing • BRCA Biomarker • Metastases
|
EGFR (Epidermal growth factor receptor) • HER-2 (Human epidermal growth factor receptor 2) • KRAS (KRAS proto-oncogene GTPase) • BRAF (B-raf proto-oncogene) • ER (Estrogen receptor) • ALK (Anaplastic lymphoma kinase) • TMB (Tumor Mutational Burden) • BRCA1 (Breast cancer 1, early onset) • BRCA2 (Breast cancer 2, early onset) • FGFR2 (Fibroblast growth factor receptor 2) • PTEN (Phosphatase and tensin homolog) • IDH1 (Isocitrate dehydrogenase (NADP(+)) 1) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1)
|
BRAF V600E • KRAS mutation • BRCA2 mutation • BRCA1 mutation • EGFR mutation • KRAS G12C • HER-2 amplification • PIK3CA mutation • BRAF V600 • NTRK1 fusion • PTEN mutation • KIT mutation • FGFR2 mutation • RET mutation • MET mutation • KRAS G12 • ESR1 mutation • NTRK1 mutation • BRAF amplification
|
FoundationOne® CDx • TruSight Oncology 500 Assay
1year
IDH 2 - a new gene for personalized therapy in pulmonary adenocarcinomas – reports of two cases (ECP 2024)
Known under low incidence – mutations require research for 0.4% to 1.1 in pulmonary adenocarcinomas, IDH1/2 inhibitors prescription due to high prevalence of lung carcinoma worldwide. Mutations in IDH1/2 gene may be branching drivers leading to lower subclonality evolution with predictable benefit of IDH1/2 inhibitors.The accumulation of more known cases with IDH1/2 mutations is necessary to elucidate clinicopathological characteristics/clinical evolution after target therapy, in order to reforce the new interpretation of malignant tumours postponed survival through conversion of cell cycle.
Clinical
|
HER-2 (Human epidermal growth factor receptor 2) • KRAS (KRAS proto-oncogene GTPase) • TP53 (Tumor protein P53) • MET (MET proto-oncogene, receptor tyrosine kinase) • RET (Ret Proto-Oncogene) • IDH1 (Isocitrate dehydrogenase (NADP(+)) 1) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • IDH2 (Isocitrate Dehydrogenase (NADP(+)) 2) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2) • ARG1 (Arginase 1)
|
TP53 mutation • KRAS G12C • HER-2 mutation • IDH1 mutation • IDH2 mutation • MET exon 14 mutation • KIT mutation • RET mutation • MET mutation • KRAS G12 • NTRK1 mutation • NTRK1 translocation
|
Oncomine Precision Assay
over1year
Comprehensive genomic profiling provides patients access to novel matched therapies in a diverse real-world cohort of advanced lung cancer patients (ESMO 2024)
In a real-world, retrospective analysis of a cohort of advanced NSCLC patients, most oncologists utilized CGP to identify and treat patients with guideline-recommended variant matched targeted therapy, with adherence rates varying by variant. Importantly, even patients that received CGP results prior to FDA approval of novel therapies, received matched therapy once they were included in guidelines.
Real-world evidence • Clinical • Real-world • Metastases
|
EGFR (Epidermal growth factor receptor) • KRAS (KRAS proto-oncogene GTPase) • BRAF (B-raf proto-oncogene) • ALK (Anaplastic lymphoma kinase) • RET (Ret Proto-Oncogene) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2)
|
BRAF V600E • KRAS mutation • EGFR mutation • KRAS G12C • BRAF V600 • NTRK1 fusion • NTRK3 fusion • NTRK2 fusion • EGFR exon 19 deletion • RET fusion • ALK fusion • RET mutation • ROS1 fusion • MET mutation • KRAS G12 • NTRK1 mutation • ALK-ROS1 fusion • NTRK3 mutation
|
Tempus xT Assay
over1year
Poorly Differentiated Thyroid Cancer: A Rare Entity (ENDO 2024)
Tyrosine kinase inhibitors i.e, sorafenib and lenvatinib, have been used in cases of progressive, recurrent, or metastatic disease not responsive to 131I therapy. PDTC accounts for 3–5% of all thyroid carcinomas. The 5, 10-, and 15-year survival rates of patients are 50–85%, 34–50%, and 0%, respectively. RAS gene alterations are found in 25–35%, BRAF mutation in 15–27%, TERT promoter mutation in 40% and mutant TP53 in 16–28% of PDTCs.
PD(L)-1 Biomarker • BRCA Biomarker • IO biomarker
|
BRAF (B-raf proto-oncogene) • TP53 (Tumor protein P53) • BRCA1 (Breast cancer 1, early onset) • RET (Ret Proto-Oncogene) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2) • TERT (Telomerase Reverse Transcriptase) • NKX2-1 (NK2 Homeobox 1)
|
PD-L1 expression • TP53 mutation • BRAF V600E • BRCA1 mutation • NTRK1 fusion • NTRK3 fusion • NTRK2 fusion • RET fusion • RET mutation • TERT mutation • NTRK1 mutation • TERT promoter mutation • NTRK3 mutation
|
OmniSeq INSIGHT
|
sorafenib • Lenvima (lenvatinib)
over1year
Prevalence and detection methodology for preliminary exploration of NTRK fusion in gastric cancer from a single-center retrospective cohort. (PubMed, Hum Pathol)
FISH could complement NGS detection, particularly when NTRK fusion is detected by DNA sequencing. NTRK fusion in GC may not be limited to specific subtypes.
Retrospective data • Journal
|
HER-2 (Human epidermal growth factor receptor 2) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2) • LMNA (Lamin A/C) • NTRK (Neurotrophic receptor tyrosine kinase)
|
NTRK1 fusion • LMNA-NTRK1 fusion • NTRK1 mutation • NTRK fusion
over1year
An odd dancing couple. Non-small cell lung carcinoma with coexisting EGFR mutation and NTRK-1 translocation: A case report. (PubMed, Diagn Cytopathol)
Moreover, so was the case with the concomitant expression of NTRK fusions and EGFR mutations. We present a case report of a patient with concomitant EGFR mutation and NTRK1 fusion.
Journal
|
EGFR (Epidermal growth factor receptor) • HER-2 (Human epidermal growth factor receptor 2) • KRAS (KRAS proto-oncogene GTPase) • BRAF (B-raf proto-oncogene) • ALK (Anaplastic lymphoma kinase) • MET (MET proto-oncogene, receptor tyrosine kinase) • RET (Ret Proto-Oncogene) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK (Neurotrophic receptor tyrosine kinase)
|
EGFR mutation • NTRK1 fusion • NTRK1 mutation • NTRK expression • NTRK fusion
over1year
Agnostic Administration of Targeted Anticancer Drugs: Looking for a Balance between Hype and Caution. (PubMed, Int J Mol Sci)
Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.
Review • Journal • Tumor mutational burden • BRCA Biomarker • PD(L)-1 Biomarker • IO biomarker
|
HER-2 (Human epidermal growth factor receptor 2) • BRAF (B-raf proto-oncogene) • ALK (Anaplastic lymphoma kinase) • TMB (Tumor Mutational Burden) • BRCA1 (Breast cancer 1, early onset) • BRCA2 (Breast cancer 2, early onset) • MSI (Microsatellite instability) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • NTRK3 (Neurotrophic tyrosine kinase, receptor, type 3) • NTRK2 (Neurotrophic tyrosine kinase, receptor, type 2) • HRD (Homologous Recombination Deficiency)
|
PD-L1 expression • BRAF V600E • TMB-H • HER-2 overexpression • HER-2 amplification • BRAF V600 • HRD • RET mutation • ALK translocation • NTRK1 mutation • HER-2 amplification + PD-L1 expression
|
Mekinist (trametinib) • Tafinlar (dabrafenib)