^
Contact us  to learn more about
our Premium Content:  News alerts, weekly reports and conference planners
BIOMARKER:

SF3B1 K700E

i
Other names: SF3B1, Splicing Factor 3b Subunit 1, Splicing Factor 3b Subunit 1 155kDa, Spliceosome-Associated Protein 155, Splicing Factor 3B Subunit 1, SF3b155, SAP155, Pre-MRNA Splicing Factor SF3b 155 KDa Subunit, Pre-MRNA-Splicing Factor SF3b 155 KDa Subunit, Splicing Factor 3b Subunit 1 155kD, Pre-MRNA Processing 10, SAP 155, Hsh155, PRPF10, PRP10, MDS
Entrez ID:
Related biomarkers:
12ms
SF3B1 Gene Mutations and Their Significance for Patients with Myelodysplastic Neoplasms (MDS) (ASH 2024)
Three are still alive and are undergoing azacitidine treatment at 6.5, 8.5, and 21 months after their diagnosis.Identification of splicing factor gene mutations is an important diagnostic tool for the stratification of MDS patients...Other biological factors such as the mutation variant, association with complex karyotypes, and mutations in other genes, may also affect the prognosis of patients with mutated SF3B1. Therefore, a comprehensive view that includes all cytogenomic, molecular, and clinical data is important for accurate diagnosis and personalized treatment of MDS patients.Supported by MH CZ-DRO 0064165
Clinical
|
TP53 (Tumor protein P53) • NRAS (Neuroblastoma RAS viral oncogene homolog) • DNMT3A (DNA methyltransferase 1) • JAK2 (Janus kinase 2) • RUNX1 (RUNX Family Transcription Factor 1) • SF3B1 (Splicing Factor 3b Subunit 1) • ASXL1 (ASXL Transcriptional Regulator 1) • TET2 (Tet Methylcytosine Dioxygenase 2) • SRSF2 (Serine and arginine rich splicing factor 2) • BCOR (BCL6 Corepressor) • U2AF1 (U2 Small Nuclear RNA Auxiliary Factor 1) • STAG2 (Stromal Antigen 2) • ZRSR2 (Zinc Finger CCCH-Type, RNA Binding Motif And Serine/Arginine Rich 2) • BCORL1 (BCL6 Corepressor Like 1)
|
TP53 mutation • NRAS mutation • TET2 mutation • SF3B1 mutation • SRSF2 mutation • U2AF1 mutation • Chr del(5q) • SF3B1 K666N • SF3B1 K700E
|
Archer® VariantPlex® Myeloid panel
|
azacitidine
1year
Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing. (PubMed, bioRxiv)
These new BS are usually very close to the natural sites, occur upstream or downstream, and either exhibit stronger base-pairing potential with U2 snRNA or are adjacent to stronger polypyrimidine tracts than the WT sites. The widespread imprecision in BS recognition induced by K700E with limited changes in 3' ss selection supports a positive role for SUGP1 in early BS choice and expands the physiological consequences of this oncogenic mutation.
Journal
|
SF3B1 (Splicing Factor 3b Subunit 1)
|
SF3B1 mutation • SF3B1 K700E
1year
Cancer-associated SF3B1-K700E mutation controls immune responses by regulating Treg function via aberrant Anapc13 splicing. (PubMed, Sci Adv)
In addition, acute myeloid leukemia grows faster in aged, but not young, Sf3b1K700Efl/+/Foxp3YFP-Cre mice compared to Foxp3YFP-Cre mice. Our results highlight the impact of cancer-associated SF3B1 mutation on immune responses, which affect cancer development.
Journal
|
SF3B1 (Splicing Factor 3b Subunit 1) • CD4 (CD4 Molecule)
|
SF3B1 mutation • SF3B1 K700E • FOXP3 expression
1year
Long-read transcriptome sequencing of CLL and MDS patients uncovers molecular effects of SF3B1 mutations. (PubMed, Genome Res)
Using transcriptome-wide RNA binding maps and molecular dynamics simulations, we showed multimodal SF3B1 binding at 3' splice sites and predicted reduced RNA binding at the second binding pocket of SF3B1K700E Our work presents the hitherto most complete LRTS study of the SF3B1 mutation in CLL and MDS and provides a resource to study aberrant splicing in cancer. Moreover, we showed that different disease prognosis most likely results from the different cell types expanded during carcinogenesis rather than different mechanisms of action of the mutated SF3B1 These results have important implications for understanding the role of SF3B1 mutations in hematological malignancies and other related diseases.
Journal
|
SF3B1 (Splicing Factor 3b Subunit 1)
|
SF3B1 mutation • SF3B1 K700E
1year
The non-canonical BAF chromatin remodeling complex is a novel target of spliceosome dysregulation in SF3B1-mutated chronic lymphocytic leukemia. (PubMed, Leukemia)
Finally, Cancer Dependency Map analysis and BRD9 inhibition displayed BRD9 dependency and sensitivity in cell lines and primary CLL cells. In conclusion, spliceosome dysregulation caused by SF3B1 mutations leads to multiple ASEs and an altered ncBAF complex interactome, highlighting a novel pathobiological mechanism in SF3B1MUT CLL.
Journal • BRCA Biomarker
|
BRCA2 (Breast cancer 2, early onset) • SF3B1 (Splicing Factor 3b Subunit 1)
|
SF3B1 mutation • SF3B1 K700E
1year
Cancer-associated SF3B1 Mutations Inhibit mRNA Nuclear Export by Disrupting SF3B1-THOC5 Interactions. (PubMed, J Biochem)
Importantly, other types of cancer-associated SF3B1 mutations also inhibited mRNA nuclear export similarly, suggesting that it is common for cancer-associated SF3B1 mutation to inhibit mRNA nuclear export. Our research highlights the critical role of the THOC5-SF3B1 interaction in the regulation of mRNA nuclear export and provides valuable insights into the impact of SF3B1 mutations on mRNA nuclear export.
Journal
|
SF3B1 (Splicing Factor 3b Subunit 1)
|
SF3B1 mutation • SF3B1 K700E
2years
A Public Neoantigen Produced By the SF3B1 K700E Mutation Is a Bona Fide T Cell Target in AML/MDS (ASH 2023)
We identified a highly potent TCR that eliminates cancer cells while sparing mutation negative cells. These data support further development of this TCR as a potential therapeutic for MDS and AML.
CD8 (cluster of differentiation 8) • HLA-A (Major Histocompatibility Complex, Class I, A) • SF3B1 (Splicing Factor 3b Subunit 1)
|
SF3B1 mutation • HLA-A*02 • SF3B1 K700E
2years
Genomic Landscape of Ibrutinib- and/or Acalabrutinib-intolerant Patients with B-cell Malignancies Treated with Zanubrutinib in a Phase 2 Study (ASH 2023)
This is the first study to describe the genomic landscape of patients with B-cell malignancies who were intolerant to ibrutinib and/or acalabrutinib. Here we show that the gene mutational profile of these patients at baseline or at/after disease progression is comparable with patients with relapse/refractory disease who tolerate ibrutinib and, consistent with other studies, patients with mutations in TP53, SF3B1 or ATM genes had less favorable prognosis on BTKi. Further, intolerant patients who progressed on zanubrutinib acquired new BTK mutations and/or had an increase in the frequency of BTK mutations.
P2 data • Clinical
|
TP53 (Tumor protein P53) • ATM (ATM serine/threonine kinase) • NOTCH1 (Notch 1) • SF3B1 (Splicing Factor 3b Subunit 1)
|
TP53 mutation • ATM mutation • SF3B1 mutation • SF3B1 K700E • BTK mutation • BTK C481
|
PredicineHEME™
|
Imbruvica (ibrutinib) • Brukinsa (zanubrutinib) • Calquence (acalabrutinib)
2years
Impact of Mutational Status on Clinical Response to Imetelstat in Patients with Lower-Risk Myelodysplastic Syndromes in the IMerge Phase 3 Study (ASH 2023)
Higher RBC-TI rates were observed in patients with various baseline mutational profiles treated with imetelstat compared with placebo in IMerge. While the sample size for specific mutations was small, consistent with the observation that patients with LR-MDS have a low number of specific mutations, TI responses in patients receiving imetelstat occurred regardless of the presence of mutations associated with poor prognosis or the number of mutations. Imetelstat showed comparable TI rates across different molecularly defined subgroups, suggesting that clinical benefit of imetelstat in patients with LR-MDS is independent of the underlying molecular pattern.
Clinical • P3 data
|
TP53 (Tumor protein P53) • DNMT3A (DNA methyltransferase 1) • RUNX1 (RUNX Family Transcription Factor 1) • SF3B1 (Splicing Factor 3b Subunit 1) • ASXL1 (ASXL Transcriptional Regulator 1) • TET2 (Tet Methylcytosine Dioxygenase 2) • ETV6 (ETS Variant Transcription Factor 6) • CUX1 (cut like homeobox 1)
|
TP53 mutation • DNMT3A mutation • RUNX1 mutation • ASXL1 mutation • TET2 mutation • SF3B1 K700E • ETV6 mutation • CUX1 mutation
|
Rytelo (imetelstat)